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NOTE ON AN ANALYTICAL CRITERION FOR
ELASTIC NORMAL MODE OSCILLATIONt

LESTER S, s, LEEt

University of Toronto, Toronto 5, Canada

Abstract-A definition of a stationary mode elastic oscillation of structure is derived based on a variational
criterion which in tum is derived from the uniqueness proof for such problems. For materials in which stress is a
homogeneous function of strain, e.g. a power-Iawed relation in the uniaxial form, the stationary modes coincide
with the normal modes. This variational approach provides some physical insight into the characteristics of an
elastic oscillation, e.g. Rayleigh's minimum theorem, and is entirely consistent with the concept ofapproximation
based on a truncated series in which only a certain number of preferred modes are taken.

1. INTRODUCTION

THE vectorial (Newtonian) and the variational (Euler-Lagrangian) theories of mechanics
are two different mathematical descriptions of the same realm of natural phenomena [1].
Some important specific behaviours of a certain system, e.g. the elastic normal mode
vibration, may also be described from the different point of view of these two theories.
The vectorial analysis of the normal mode vibration may be investigated by some
mathematical techniques, such as the separation of variables. In this note an attempt is
made to explore a variational criterion for the normal mode oscillation.

The elastic stress-strain relation is assumed to be:

(1)

where W is the strain energy density. For the case of linear elasticity, equation (1) reduces
to

(2)

where Cljll is a positive definite symmetric tensor,
Consider an elastic oscillation problem, i.e. initial displacements u? and initial velocities

u? are prescribed and therefore no external forces do work on the structure. Consider the
solutions to two problems for identical structures, differing only in the initial conditions,
ujO, ujO and utO, utO, By the principle of virtual velocities, where m is the mass density, then

(3)

t Presented at the Second Canadian Congress of Applied Mechanics, University of Waterloo, May 1969.
t Assistant Professor, Department of Mechanical Engineering.
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Consider first the linear elastic case, i.e. equation (2), (3) can be written as

d~ =0
dt

where

(4)

(Sa)

(5b)

~ = ~K+~V

~K = Iv ~(Ui-ut)(ui-undV:?: 0

~v = Iv l(aij-O'tJ(eiJ-efj) dV:?: 0

~ may be considered as a measure of difference between the two solutions. Since the system
is linear, the difference between two solutions uj(X, t) = ui-ut, u,{X, t) = ui-ut is also a
solution of the problem. In terms of Uj and Uj, ~ and dAfdt become

and

~ = ~K+~V = K+ V = E

d~ _ dE _ dK d V _ 0
-dt - -dt - -dt-d"t-

~u = Iv ~(Uf-uf)(ui-uf)dV = U

(6a)

(6b)

(6c)

where K, V, E and U are respectively the kinetic energy, the strain energy, the total energy
and the total amount of the square of displacement, of the solution Uj, uj • Uniqueness of
solution will follow then from observing that the initial conditions are the same for both
solutions, i.e. ufO = ufO and uio = utOthroughout the body. This implies that ~ == 0 and
in turn that the two solutions are identical. If, however, the two solutions do not have the
same initial conditions, but that they do satisfy the same boundary conditions, then one
solution may be considered as an approximation for the other with a value of difference or
error ~.

It is clear that the best approximate solution may be the one which makes ~ minimum.
However, if an attempt is made to formulate the problem in as general terms as possible,
one is led to the undeniable but impractical conclusion that the best approximation is the
actual solution of the problem, i.e. Uj = ul- uf = 0, uj = uf- uf = 0 and hence ~ = O.
In order to ensure that the approximate solution is not chosen from a set of fields which
contains the actual solution, it is reasonable to compare all the possible fields based on
certain criterion. A reasonable constraint will be that ~ = const. Our next problem will be
then to find a reasonable measure of difference between two solutions.

At any state of oscillation, the displacement and the velocity fields are the basic indepen­
dent variables ofthe system. Hence, the displacement and the velocity fields may be treated
separately. A measure of difference between two "static deformations", u,/(X, t) and
uf(X t), is defined by ~u U (approximation by least square method). Similarly, the
measure of difference between two "kinematic deformations", uf(X, t) and uf(X, t), is
defined by ~K = K.
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Consider first the displacement field. It would be reasonable to judge the goodness of an
approximate displacement field by the smallness of l1u based on an isometric constraint
I1v = const. This constraint condition follows from the condition 11 = const. Then the
most important displacement field Ui which should not be omitted from the approximation
will be the one which maximizes U = l1u subject to the condition that V = I1v is held
constant. Equivalently, in order to have the same goodness of approximation, i.e. U =
~u = const., the most important displacement field Ui will be the one which minimizes the
strain energy V = I1v.

Consider next the velocity fields. If - d~K/dt is large, then the difference between the
two velocity fields will decrease rapidly. In consequence, the most important velocity field
which should not be omitted from the approximation will be the one which makes K = 11K

maximum or -dK/dt = -dI1K/dt minimum. In order to avoid the similar impractical
conclusion, the most important velocity field ui should be the one which minimizes
- dK/dt = - d~K/dt subject to the condition that K = ~K is held constant.

The arguments given above are carried out for the linear elastic case. However, for non­
linear materials, it is hypothetized that ~ behaves almost in the same way as E and dl1/dt
behaves almost in the same way as dE/dt. Then the criteria are defined in the same way for
both linear and non-linear materials.

The combined criteria given above for displacement and velocity fields lead to a
variational problem whose solutions referred to as stationary mode solutions will be discussed
in the following section. It will be shown that for some forms of constitutive relation, the
stationary mode solutions coincide with that of a normal mode oscillation.

The application of these concepts of stationary mode for approximating solution of
elastic oscillation problem will be studied. The ideas of the approximation are based on the
same concepts which are discussed in detail in [2] and [3].

2. STATIONARY MODE SOLUTIONS

The stationary mode is defined as the kinematically admissible displacement field in
which the strain energy is less than that in all neighboring kinematically admissible dis­
placement fields which possess the same amount of U, i.e.

1 1 = tW(Eii) dV- A1 [t ~UiUi dV - uJ = minimum (7a)

where A1 is the Lagrangian multiplier and it is assumed that o2W/oEijoekl is a positive
definitive symmetric tensor and hence the extremal values of Yare relative minimal. As to the
velocity field, the stationary mode solution is defined as the kinematically admissible
velocity field in which the rate of decrease of the kinetic energy (or the rate of change of the
strain energy) is minimum in comparison with that in all neighboring kinematically
admissible velocity fields which possess the same total kinetic energy, i.e.

12 = J. oWe.. dV-A2 [J. ~ti.ti.dV-KJ = minimum (7b)v oeij I] v 2 I I •

The Euler equations of (7), after using equation (1), are

(8)
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oaij .
-+Azmu. = 0 (9)oX

j
1

since aij is independent of the variation of velocity. From equations (8) and (9), the following
relations can be obtained:

and

aK i .-- = (T·,e··dV = 2AZKdt v I) I)

(10)

(11 )

(12)

(13)

where n is the complementary energy density.
Equation (7) or equations (8) and (9), thus, provide a displacement field Uj(X, U) for a

specific level of V and also a velocity field Ui(X, K) for a specific level of K. These two
criteria are further connected by the conservation of energy,

K + V = E = total energy = const. (14)

Hence, ifthe initial conditions are given, equations (11), (13) and (14) permit solutions for
K(t), Vet) and Vet), and then the stationary mode solutions Uj(X, t) and u;(X, t).

Equation (13) can be regarded as a necessary condition for equilibrium since it can be
obtained from equation (9) and the equation of motion O(Tji8Xj = mUj (body forces are
neglected). It is not, however, a sufficient condition, and the stationary mode solution may
not be dynamically admissible. It will be shown that if the material is such that (Tu is a
homogeneous function of eij of order n, say, then equation (13) is also a sufficient condition
for equilibrium since the Euler equations can be reduced to a local equilibrium equation as
follows:

If (Tij is a homogeneous function of eij of order n, then the Euler solution of (8) can be
expressed as

Uj(X, V) = y(V)4Jj(X).

Substituting (15) into (11) and differentiating both sides with respect to K, it gives

(15)

(16)o (A. i Y) Y
oK ~ = 2.J(KV}"

Using equations (13), (16), (11) and (8), the acceleration of the stationary mode solution is,
from equation (10),

(17)
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Hence, the stationary mode solution is both kinematically and dynamically admissible, and
therefore, the stationary mode solution describes the behaviour of a single normal mode
oscillation, and it has the following relations:

Q=nW

2
V= -l-AtU,

+n

(18)

(19)

For the linear elastic case, i.e. n = 1, equation (19) becomes

At = Iv tCjjk1f:j/'k1 dV = Iv CjjktPi,/Pkl dV
Iv (m/2)ujui dV Iv mcPicPj dV

(20)

(21)

(22a)

Hence, At, the square of the natural frequency, is stationary (relative minimal) about the
normal mode and is independent of the amplitude. Equation (21) gives then Rayleigh's
minimum theorem (e.g. [4]).

3, APPLICATION FOR APPROXIMATE SOLUTIONS

As discussed in Section 1, the stationary mode distributions are the most important
fields which should not be omitted from the approximation since they have more capacity
for storing [see equation (7a)] and preserving [equation (7b)] energy in a body. Therefore,
they may be used legitimately as an approximate solution. In the case of linear elasticity
where modes may be superposed, the solution is approximated by a truncated series, and
it was shown in [2] that the mode approximations are entirely consistent with the established
view of normal mode analysis.

Suppose that the stationary mode solution is now used to approximate an unknown
solution ut, lit. Since ut and lii are not known for t > 0, the initial conditions provide the
only possible information. In such cases, the initial amplitudes Yo and Yo ofthe approximate
mode solution Uj(X, t) = y(t)cPi(X), ti; = YcPi(X) can be regarded as parameters which may be
varied in order to provide the best approximation, i.e. to make the initial differences

Llg = Iv ~(utO-u?)(urO-u?)dV,

and

AO _ [m(".o. '0)('.0 "o)dV
UK - J

v
2" Ui -Uj Ui -Uj

as small as possible. Hence, Yo and Yo are determined by

dLlg = 0 = Yo = Iv mut°cPj dV
dyo SvmcPicPjdV

dLl~ = O=Yo = Svmlii°cPidV
dyo Iv mcPicPi dV

(22b)

(23a)

(23b)
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(24)

(25)

Equation (24) shows that the mode shape ¢i(X) is orthogonal to the differences, ufo - u? and
ufo - u? between these two initial fields. Also, equation (25) shows that the average of the
differences is equal to the difference between the averages.

One further useful piece of information can be obtained in the form of upper bound on
the period of oscillation. Suppose that the initial conditions are ufo = 0 and ufo prescribed
throughout the body. From (7b), at any level of kinetic energy, the actual rate of decrease of
kinetic energy is not less than that of the primary stationary mode solution. This implies
that

T* s; T (26)

(27)

where T* is the period of oscillation of the actual solution and Tis the period of the primary
stationary mode oscillation in which the initial conditions are found by putting KO K*o
rather than by minimizing L1~.

To illustrate the application of the stationary mode for approximate solutions, problems
of uniform beam subjected to transverse impulse as shown in Figs. I(a) and I(b) will be given.
The moment--eurvature relation, M - K, will be assumed to be a power law type as,
Fig. 1(c),

~ = (~)P, K
K o M o - i"PX

where Ko and M0 are constants and P will be taken to be an odd positive integer. It can be
easily shown that relation (27) ensures the existence of a normal mode oscillation. In the
following analysis, the elementary beam theory will be used.

Consider first the simply supported beam subjected to a uniform impulse I = mVo,
Fig. I(a). The mode shape ¢(X) may be found by applying equation (7a) or directly by seek­
ing solutions to the Euler equation (8), i.e. u = y¢(X) and

(28)

where ~ = X II, m = mass per unit length, and

mF(K [Z)lIP
A = 0 Al},l liP = const. (29)

Mo

No closed form solution can be found to this equation for the nonlinear case and a simple
numerical procedure was used to solve for ¢(X). The following procedure appears to
converge very rapidly:

(i) guess a function ¢O(X) for the right hand side of (28);
(ii) integrate twice, taking account of boundary conditions on d2¢/d~2 ;

(iii) raise this function to the power P;
(iv) integrate twice, taking into account the boundary conditions on ¢;
(v) normalize the resulting function, i.e. ¢(1/2) = I, giving £/>1 and the normalization

factor A.
£/>1 becomes a new guessed function, and the process is repeated.
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A good approximation (after the first cycle in the above procedure) to the primary
modes for the cases P = 3 and P = 5 may be given analytically:

P = 1,

P = 3,

P = 5,

¢~<e) = sin n~, Al = n4

¢~(~) = 1'~37 (sin 1t~ -l7 sin 31t~),

¢~(~) = ~o(Sin 1t~ -fssin 31t~+tiosin 51t~),
1·06

As = 17·91

(30)

The primary modes and their corresponding moment distributions are shown in Fig. l(d).
From equations (10), (15) and (20), it can be shown that the normal mode solution y(t) is
obtained by the ordinary differential equation

(31)
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where

mV5
1]=

MOKo

is the dynamic parameter indicating the intensity of the initial impulse and Yo is the "best"
value of the initial amplitude of the approximate normal mode solution [see equation (23a)].
Equation (31) was solved by a Runge-Kutta procedure (e.g. [5]), and the normal mode
solutions are plotted in Figs. 2-4.

The equation of motion of the actual dynamic problem, in a non-dimensional form, is

:e:[-:;2 (K:[2) JIP = 1]::2L:/2) (32)

where the dimensionless time T = J(Mo/mI4 Ko)t. The actual dynamic solutions were
carried out by the finite-difference method and a Runge-Kutta procedure and were plotted
in Figs. 2-4. Figures 2-4 show the comparisons of the central displacements and the central
velocities between the actual solution and the approximate normal mode solution.

In this example, the linear case, P = 1, has the smallest value of A/K'·o and this value
increases as the behaviour of the material becomes more highly nonlinear. This point is
expected since the primary mode of the linear case is closest to the uniform distribution
of the initial impulse.

Consider next the built-in supported beam subjected to impulsive loading over a length
1/2 symmetric about the midpoint, so that the initial velocity is Vo on this section and zero
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in the remaining length 112 as shown in Fig. l(b). In this example, only the linear case,
P = 1, will be considered. The calculating procedures are exactly the same as that in the
previous example except the boundary conditions. In solving the mode shape cP~(X),

no boundary conditions on d2cPld~2 in step (ii) are available, while there are four needed
boundary conditions on cP and dcPld~ in step (iv).
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For the build-in problem, At = 492·9 for P = 1. The primary mode and the moment
distribution M~(X) are shown in Fig. l(d). The central displacement-time and velocity­
time histories for '1 = 1 are shown in Fig. 5. Figure 6 shows the comparisons of the bending
moments at the ends and the centre between the actual and the approximate solutions.
Figure 7 shows the bending moment distributions of these two solutions at time r = 0·1,
0·2,0·3 and 0-4. It can be seen that the inflection point remains at ~ = 0·226 almost all the
time.

From the examples, it is seen that, in general, the stationary mode solution may provide
not only a good approximation in an average sense to an impulsive loading problem but also
some physical insight into the features of the problem.
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A6cTpaKT-BbIBO,o;HTCli orrpe,o;eJIeHHe CTaUHoHapHoro BH,o;a yrrpyroro KOJIe6aHHlI KOHCTPYKUHH, Ha OCHOBe

BapHaUHOHHoro KpHTepHlI, KOTopoe rrOCJIe,o;CTBeHHO orrpe,o;eJIeHHOe H3 ,o;OKa3aTeJIbCTBa e,o;HHCTBeHHOCTH

.iVllI TaKHXlICe 3a,o;a'l. LJ:JIli MaTepHaJIOB, B KOTOpblX HprrplillCeHHe lIBJIaeTCli O,o;HOPO,lJ.Holi cjJyHKUHeli ,o;ecjJop­

MaUHH (HarrpHMep CTerreHHali 3aBHCHMOCTb B O,o;HOCHOli cjJopMe), CTaUHOHapHble BH,o;bl KOJIe6aHHH coma­

CylOTCli C HOpMaJIbHblMH BH,o;aMH KOJIe6aHHli. 3TOT BapHaUHOHHblli rro,o;xo,o; ,o;aeT HeKoTopylO cjJH3H'IecKYIO

crroco6HOCTb TO'lHOro HCCJIe,o;OBaHHlI xapaKTepHCTHK yrrpyroro KOJIe6aHHlI, HarrpHMep TeopeMy MHHHMyMa

PeJIeli. 3TOT rro,o;xo,o; TaKlICe ueJIHKOM COrJIaCOBblBaeTCli C KOHuerrUHeli arrrrpOKCHMaUHH, OCHOBaHHoli Ha

oT6paCblBaHHH '1JIeHOB B pll,o;ax, KOTOpblX Y'lHTbIBaeTCli HeKOTopoe '1HCJIO Heo6xo,o;HMblX BH,o;OB KOJIe6aHllli.


